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Abstract. We introduce a pointwise variant of the Assouad dimension for measures
on metric spaces, and study its properties in relation to the global Assouad dimension.
We show that, in general, the value of the pointwise Assouad dimension may differ from
the global counterpart, but in many classical cases, the pointwise Assouad dimension
exhibits similar exact dimensionality properties as the classical local dimension, namely
it equals the global Assouad dimension almost everywhere. We also prove an explicit
formula for the Assouad dimension of certain invariant measures with place dependent
probabilities supported on self-conformal sets.

1. Introduction

Originally, the Assouad dimension was defined as a means to investigate embedding
problems of metric spaces [1], and it is still used as an important tool in the field [23]. In
the past decade, the interest in the Assouad dimension has seen a substantial increase
also in fractal geometry, and various Assouad-type dimensions have been developed and
studied in many classical cases. The book by Fraser [9] collects the recent developments
in one place and provides an introduction to Assouad dimensions in fractal geometry.
The Assouad dimension describes the local structure of the space by quantifying the size
of the thickest parts of the space across all scales, which provides a heuristic on why it
is effective in the study of embedding problems: if the space has locally thick parts, it
can not be embedded into a small space.

As is usual in dimension theory, the Assouad dimension of a space is closely connected
to a dual notion of dimension for measures supported on the space. For a finite Borel
measure µ fully supported on a metric space X, this Assouad dimension of the measure
is defined by

dimA µ = inf

{
s > 0: ∃C > 0, s.t. for all x ∈ X, 0 < r < R,

µ(B(x,R))

µ(B(x, r))
≤ C

(
R

r

)s}
,(1.1)

where B(x, r) is the closed ball with center x and radius r. The Assouad dimension
of a measure has a similar intuition behind it as the Assouad dimension of a space: it
quantifies the size of the least regular parts of the measure across all scales.
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Perhaps the most important concepts in the dimension theory of measures are the
upper and lower local dimensions of a measure defined at x ∈ X by

dimloc(µ, x) = lim sup
r→0

log µ(B(x, r))

log r
,

and

dimloc(µ, x) = lim inf
r→0

log µ(B(x, r))

log r
,

respectively. When the upper and lower limits agree, the limit is denoted by dimloc(µ, x)
and it is called the local dimension of the measure µ at x. Unlike the different notions
of “global” dimension, which are concerned with the average regularity (e.g. in the case
of Hausdorff, packing and Minkowski dimensions) or extremal regularity (in the case
of Assouad and lower dimensions) of the measure on its full support, these pointwise
dimensions quantify the regularity of the measure around a given point. The upper and
lower local dimensions can be thought of as the pointwise analogue of the Hausdorff
and packing dimensions of the measure, respectively, and in this paper, we widen the
theory by defining a natural pointwise analogue of the Assouad dimension. We call this
dimension the pointwise Assouad dimension of the measure and define it at x ∈ X by

dimA(µ, x) = inf

{
s > 0: ∃C(x) > 0, s.t. for all 0 < r < R,

µ(B(x,R))

µ(B(x, r))
≤ C(x)

(
R

r

)s}
.

The crucial difference to the global Assouad dimension of the measure is that the con-
stant C in the definition may depend on the point x. Similarly as the Assouad dimension
captures information on the least regular parts of the measure across all scales, the point-
wise Assouad dimension quantifies the least regular scales at a given point. The aim of
this paper is to discuss the basic properties of the pointwise Assouad dimension from a
fractal geometric point of view.

We note that the ideas in the definition are not entirely new, as was pointed out to us
by Anders and Jana Björn as well as the anonymous referee. In [3], the authors consider
certain “exponent sets”, one of which corresponds to our definition of the pointwise
Assouad dimension, and use them to give sharp estimates for variational p-capacities of
annuli in metric spaces. The authors give some examples about the behaviour of these
exponent sets, however, most of the measures they consider are absolutely continuous,
which by the Lebesgue differentiation theorem can have “non-trivial” (that is different
from the dimension of the Lebesgue measure) pointwise Assouad dimension only in a
set of measure zero. In contrast, the measures we study are singular and, as we will see,
their pointwise Assouad dimensions have “non-trivial” behaviour almost everywhere.
Therefore, we believe that the present article is a welcome contribution to the theory from
a fractal geometric point of view, and that the results in this paper and [3] complement
each other quite well.

1.1. Main results and the structure of the paper. The structure of the paper is as
follows. We begin by establishing some notation and recalling basic results concerning
Assouad dimensions of sets and measures in Section 2. In Section 3 we discuss some
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basic properties of the pointwise Assouad dimension and its relations to various existing
notions of dimension. In particular, we observe that the pointwise Assouad dimension
is always bounded from above by the global Assouad dimension, and that the inequality
can be strict. To contrast this, we devote the rest of the paper to the study of the cases
where the maximal pointwise Assouad dimension coincides with the global one. In fact,
we show that in many classical constructions we have an exact dimensionality property,
meaning

(1.2) dimA(µ, x) = dimA µ,

for µ-almost every x. This is analogous to the classical exact dimensionality property for
the local dimension, which the measure is said to satisfy if dimloc(µ, x) = dimH µ, for µ-
almost every x. We start with the general setting of quasi-Bernoulli measures supported
on strongly separated self-conformal sets in Section 4, and in Theorem 4.1 prove the
exact dimensionality property (1.2) for these measures. The results are complemented
in in Section 5, where we provide an explicit formula for the Assouad dimension of
certain invariant measures for place dependent probabilities in Theorem 5.3. These place
dependent invariant measures satisfy the assumptions of Section 4 so as a corollary we
obtain the almost sure formula for the pointwise Assouad dimension as well. In the final
Section 6 we are interested in self-similar and self-affine measures. In Theorems 6.1 and
6.4, we prove the exact dimensionality property (1.2) for self-similar measures satisfying
the open set condition and self-affine measures on certain Bedford-McMullen carpets,
respectively.

2. Preliminaries

Unless stated otherwise, we assume that (X, d) is a metric space, with no additional
structure. Since we assume the metric d to be fixed, we omit it from the notation and
refer to (X, d) simply as X. Unless stated otherwise, a measure always refers to a finite
Borel measure fully supported on X and when needed, we denote the support of µ by
supp(µ). If f : X → Y is a map from X to another metric space Y , we denote the
pushforward of the measure µ under the map f by f∗µ := µ ◦ f−1. For constants C, we
sometimes use the convention C(· · · ), if we want to emphasize the dependence of C on
the quantities inside the parentheses.

2.1. Assouad dimension of sets and connection to weak tangents. We are mainly
focused on dimensions of measures in this paper, but to place the results in a wider
context, we recall some results concerning the Assouad dimensions of sets. The Assouad
dimension of a set F ⊂ X is defined by

dimA F = inf

{
s > 0: ∃C > 0, s.t. for all x ∈ F, 0 < r < R,

Nr(B(x,R) ∩ F ) ≤
(
R

r

)s}
,

where Nr(E) denotes the smallest number of open balls of diameter r needed to cover
the set E ⊂ X. A convenient way to bound the Assouad dimension of a set from below
is given by the weak tangent approach. Recall that a map T : X → X is a similarity if
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there exists c > 0, such that d(T (x), T (y)) = cd(x, y), for all x, y ∈ X. The constant c
is called the similarity ratio (of T ).

For simplicity we give the definition of weak tangents when X ⊂ Rd and make a brief
remark that they can be defined in complete metric spaces using pointed convergence in
the Gromov-Hausdorff distance [15, 20]. A closed set F ⊂ B(0, 1) is said to be a weak
tangent of a compact set X ⊂ Rd if there is a sequence of similarities Tn : Rd → Rd, such
that

Tn(X) ∩B(0, 1)→ F,

in the Hausdorff distance. The collection of weak tangents of X is denoted by Tan(X).
The following proposition gives an easy way to bound the Assouad dimension from
below. For the proof in the general setting see e.g. [20, Proposition 6.1.5].

Proposition 2.1. If X ⊂ Rd is compact, then dimA X ≥ dimA F , for all F ∈ Tan(X).

2.2. Assouad dimension of measures and the doubling property. Let us now
turn our attention to the dimensions of measures. When referring to (1.1) we sometimes
use the term global Assouad dimension to avoid ambiguity with the pointwise variant.
Originally, the global Assouad dimension of a measure was called the upper regularity
dimension in [16], but due to the intimate connections between this notion of dimension
and the Assouad dimension for sets, the term Assouad dimension of a measure is now
widely used. A simple volume argument implies that for a measure µ fully supported
on a metric space X, we have the inequality dimAX ≤ dimA µ. Moreover, in [24, 19] it
was shown that

dimAX = inf{dimA µ : µ is a measure fully supported on X},
which further supports the current terminology.

The Assouad dimension of a measure has two important properties. First of all, it
characterizes the doubling property, which the measure µ is said to satisfy if there is a
constant C ≥ 1, such that for any x ∈ X, r > 0, we have

(2.1) µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Measures that satisfy (2.1) are called doubling measures and it is a simple exercise to
show that a measure has finite Assouad dimension if and only if it is doubling [9, Lemma
4.1.1].

Secondly, the Assouad dimension is “the greatest of all dimensions” [9], that is

dimH µ ≤ dimP µ ≤ dimA µ,

where dimH µ := ess infx∈X dimloc(µ, x) and dimP µ := ess infx∈X dimloc(µ, x) are the
Hausdorff dimension and the packing dimension of the measure µ respectively. As we
will see in the next section, the pointwise Assouad dimension enjoys properties which
are analogous to the two properties mentioned.

3. Pointwise Assouad dimension

In this section, we discuss the basic properties of the pointwise Assouad dimension of
measures. It turns out that we have a correspondence between measures with the point-
wise doubling property and those with finite pointwise Assouad dimension. A measure
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µ is said to be pointwise doubling at x ∈ X, if there is a constant C(x) ≥ 1, such that

µ(B(x, 2r)) ≤ C(x)µ(B(x, r)).

We also refer to [3] for some discussion on the pointwise doubling property. The following
proposition collects some of the basic properties of the pointwise Assouad dimension.
Note that the properties (1) and (2) are the pointwise analogues for the basic properties
of the global Assouad dimension discussed in Subsection 2.2.

Proposition 3.1. Let µ be a Borel measure fully supported on a metric space X. Then
for any x ∈ X,

(1) dimA(µ, x) is finite if and only if µ is pointwise doubling at x,
(2) dimloc(µ, x) ≤ dimloc(µ, x) ≤ dimA(µ, x) ≤ dimA µ,
(3) if µ has an atom at x, then dimA(µ, x) = 0.

Proof. Claim (1). is a trivial modification of [9, Lemma 4.1.1].
For (2), note that the first and last inequalities follow straight from the definitions,

so it suffices to prove the middle inequality. Fix x ∈ X, and let s > dimA(µ, x) be
arbitrary. Then by definition, there is a constant C depending only on x, such that for
all 0 < r < R,

µ(B(x, r))

µ(B(x,R))
≥ C

( r
R

)s
.

In particular, by fixing R we see that µ(B(x, r)) ≥ crs, where c = Cµ(B(x,R))
Rs

. Taking

logarithms, dividing by log r and taking r → 0 shows that dimloc(µ, x) ≤ s. Since
s > dimA(µ, x) was arbitrary, this finishes the proof.

For (3), assume that µ has an atom at x ∈ X. Let 0 < r < R, and note that

µ(B(x,R))

µ(B(x, r))
≤ µ(X)

µ({x})
=

µ(X)

µ({x})

(
R

r

)0

.

Since the constant µ(X)
µ({x}) depends only on x, we have dimA(µ, x) ≤ 0, which is enough

to prove the claim. �

Remark 3.2. One can define the pointwise lower dimension of µ at x analogously to the
lower dimension of a measure as

dimL(µ, x) = sup

{
s > 0: ∃C(x) > 0, s.t. ∀0 < r < R,

µ(B(x,R))

µ(B(x, r))
≥ C(x)

(
R

r

)s}
.

Then Proposition 3.1(2) is strengthened to

dimL µ ≤ dimL(µ, x) ≤ dimloc(µ, x) ≤ dimloc(µ, x) ≤ dimA(µ, x) ≤ dimA µ,

for all x ∈ X. We will not, however, pursue the study of the pointwise lower dimension
any further in this paper.
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3.1. Relationships to other dimensions. Next we investigate the relationships be-
tween the pointwise Assouad dimension and other common notions of dimension in
fractal geometry. We will focus on the global Assouad dimension, the packing dimen-
sion, and the upper Minkowski dimension of measures and the Assouad dimension of
the support of the measure.

As Proposition 3.1 shows, the global Assouad dimension provides an upper bound for
the pointwise Assouad dimension at every point. The natural question that arises is if the
converse holds at some point, i.e. is it true that supx∈X dimA(µ, x) = dimA µ. It turns
out that generally speaking this is not the case, even in compact spaces. The following
is an example of a non-doubling measure, which is pointwise doubling at all points of its
support. By Proposition 3.1(1) and the analogous fact for the global Assouad dimension,
we see that this measure has finite pointwise Assouad dimension at all points, but infinite
global Assouad dimension.

Example 3.3. Let xn = 2−n, and let µ =
∑∞

n=0(3−nδ−xn + 2−nδxn), where δx denotes the
point mass centered at x. Clearly the measure is a finite Borel measure fully supported
on the set X = {0}∪

⋃∞
n=0{xn,−xn}. By considering yk = −xk, and rk = 2−k, it follows

by a simple calculation that

µ(B(yk, 2rk))

µ(B(yk, rk))
≥
∑∞

n=k−1 3−n +
∑∞

n=k 2−n∑∞
n=k−1 3−n

= 1 +

(
3

2

)k−2

→∞,

as k →∞, which shows that µ is not doubling.
The fact that µ is pointwise doubling at X \ {0} follows from properties (1) and (3)

of Proposition 3.1, and a standard calculation shows that for any 2−k ≤ r < 2−k+1, we
have

µ(B(0, 2r))

µ(B(0, r))
≤

2
∑∞

n=k−2 2−n∑∞
n=k 2−n

≤ 24−k

21−k = 8,

which shows that µ is pointwise doubling at 0.

The upper Minkowski dimension of a measure was introduced in [7] and it is defined
by

dimMµ = inf{s > 0: there exists a constant c > 0 such that

µ(B(x, r)) ≥ crs, for all x ∈ supp(µ) and 0 < r < 1}.

In [7, Proposition 4.1] it was shown that

(3.1) dimP µ ≤ dimMµ ≤ dimA µ.

By definition of dimP µ and Proposition 3.1(2) we have the general relationship dimP µ ≤
dimA(µ, x), for µ-almost every x. Recalling (3.1), it is natural to ask if a similar inequal-
ity holds for the upper Minkowski dimension in some direction. This turns out not to
be the case. For some self-affine measures on Bedford-McMullen carpets (see Section
6 for the definitions), we have dimMµ ≤ dimA(µ, x), for µ-almost all x. Example 6.6
provides an explicit example satisfying this property. However, it is also possible to have
dimMµ > dimA(µ, x) for all x, as the following example shows.
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Example 3.4. Let µ =
∑∞

n=0(3−nδ−2−n + 2−nδ2−n) be the measure of Example 3.3. Let

us first show that dimMµ ≥ log 3
log 2

. Let s < log 3
log 2

, xn = −2−n, and rn = 2−(n+2). Then

µ(B(xn, rn)) = 3−n = r
n log 3

(n+2) log 2
n < rsn,

for all large enough n. Since rn → 0 with n, this implies that dimMµ ≥ s, and taking
s→ log 3

log 2
gives the claim.

Since µ has an atom at every x ∈ X \ {0}, by Proposition 3.1(3), dimA(µ, x) = 0 <
dimMµ. At the origin, a simple calculation shows that for any 2−L < r ≤ 2−L+1 and
2−N−1 ≤ R < 2−N , we have

µ(B(0, R))

µ(B(0, r))
≤ 2

∑∞
n=N 2−n∑∞
n=L 2−n

=
22−N

21−L ≤ 8

(
R

r

)
,

and therefore dimA(µ, 0) ≤ 1 < log 3
log 2
≤ dimMµ.

Finally, a natural question to ask is if the Assouad dimension of the support of a
measure is a lower bound for the pointwise Assouad dimension of the measure, as it
is for the global one. Our next example shows that this is also not generally the case,
in fact, there are measures supported on sets of full Assouad dimension, which have 0
pointwise Assouad dimension at all points. The example is original, but builds on a
construction by Le Donne and Rajala [18, Example 2.20].

Example 3.5. Let xn,k = 2−2n + k4−2n and let X = {0} ∪
⋃∞
n=1

⋃n−1
k=0{xn,k}. Define the

measure µ as

µ =
∞∑
n=1

n−1∑
k=0

2−n

n
δxn,k .

It is straightforward to show that µ is a finite doubling measure fully supported on X.
We show that dimAX = 1, and dimA(µ, x) = 0, for every x ∈ X.

To show that dimAX = 1, by Proposition 2.1 it is enough to show that [0, 1] is a weak
tangent for the set X. For each n ∈ N define a similarity Tn : R→ R by

Tn(x) = n−142n(x− 2−2n),

and note that

Tn(X) ∩ [0, 1] =
n−1⋃
k=0

{k
n

}
→ [0, 1],

in the Hausdorff distance as n→∞, that is [0, 1] is a weak tangent to X.
Next we show that dimA(µ, x) = 0, for every x ∈ X. Note that every point x ∈ X\{0}

is an atom so by Proposition 3.1(3), dimA(µ, x) = 0, so we only need to consider the case

x = 0. Fix 0 < r < R < 1, and choose numbers L,N ∈ N, such that 2−2L < r ≤ 2−2L−1

and 2−2N+1 ≤ R < 2−2N . Clearly [0, xL+1,L] ⊂ B(0, r) and B(x,R) ⊂ [0, xN,N−1], so we
have

µ(B(0, R))

µ(B(0, r))
≤ µ([0, xN,N−1])

µ([0, xL+1,L])
≤ 2L−N+1 ≤ 2

log r

logR
.



8 ROOPE ANTTILA

Note that for any s > 0, the function φ(t) = ts log t is decreasing for 0 < t < e−
1
s , so for

all 0 < r < R < e−
1
s we have

µ(B(0, R))

µ(B(0, r))
≤ 2

(
R

r

)s
.

Since this holds for arbitrary s > 0, we have dimA(µ, 0) = 0.

4. Quasi-Bernoulli measures on self-conformal sets

As was observed in Example 3.3, a strict inequality is certainly possible in
supx dimA(µ, x) ≤ dimA µ, but it turns out that in many natural cases where the mea-
sure has some kind of rigid structure, the pointwise Assouad dimension coincides with
the global variant almost everywhere. We start by proving the exact dimensionality
property (1.2) for the most general case of this paper in this section, and work our way
down to more specific classes of measures in Sections 5 and 6. For the convenience of the
readers who are familiar with the definitions, we give the statement of the main result
of this section first, and define the necessary concepts after that. The main result we
prove at the end of this section is the following.

Theorem 4.1. If µ is a quasi-Bernoulli measure fully supported on a self-conformal set
F satisfying the strong separation condition, then

dimA(µ, x) = dimA µ <∞,
for µ-almost every x ∈ F .

Remark 4.2. In this generality, it is not possible to obtain an explicit formula for the
Assouad dimension, however, to complement the result, in Section 5 we provide an
example class of measures which satisfy the assumptions of Theorem 4.1, and calculate
their Assouad dimension explicitly.

Let us start by recalling some basics of iterated function systems. Let Λ be a finite
index set, and associate to each i ∈ Λ a contraction map ϕi from a compact subset of
Rd to itself. The collection {ϕi}i∈Λ is known as an iterated function system (IFS). By a
foundational result of Hutchinson [14], every IFS has a unique compact and non-empty
invariant set F satisfying

F =
⋃
i∈Λ

ϕi(F ),

called the limit set of the IFS. To make the study easier, one often imposes some re-
strictions on the defining maps. In this section we will concentrate on the class of
quasi-Bernoulli measures supported on self-conformal sets. In addition to the confor-
mality assumption, which we define later, we require that the IFS satisfies the strong
separation condition (SSC), namely we assume that for any distinct i, j ∈ Λ, we have
ϕi(F ) ∩ ϕj(F ) = ∅.

When studying limit sets of iterated function systems, it is often useful to consider
a symbolic representation of the IFS. Let Σ = {(i1, i2, . . .) : ik ∈ Λ} denote the set of
infinite sequences of the symbols in Λ. We call Σ the symbolic space and members of Σ
(infinite) words. For an integer n, let Σn = {(i1, i2, . . . , in) : ik ∈ Λ} be the set of finite
words of length n and let Σ∗ =

⋃
n∈N Σn ∪ {∅} denote the set of all finite words of any
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length. For any i ∈ Σ, let i|0 = ∅ denote the empty word. We use the abbreviation
i = (i1, i2, . . .) for a fixed element of Σ and the same notation i = (i1, . . . , in) for elements
of Σn, but the meaning will be clear from the context. For i = (i1, . . . , in) ∈ Σn, let
i− = (i1, . . . , in−1) denote the finite word obtained by dropping the last element of i. If
i ∈ Σ, we write i|n = (i1, . . . , in) ∈ Σn for the projection of i onto the first n coordinates.
For i ∈ Σn, the cylinder [i] ⊂ Σ is defined to be the set of all infinite words in Σ whose
first n letters are the letters of i. In some proofs, we use for i ∈ Σ and j ∈ Σ∗ the
notation j < i, to mean that the word i contains the word j as a substring.

For the contractions ϕi we abbreviate

ϕi|n = ϕi1 ◦ . . . ◦ ϕin .
Recall that there is a natural correspondence between the symbolic space Σ and the
limit set F by the coding map π : Σ→ F defined by

(4.1) {π(i)} =
∞⋂
n=1

ϕi|n(F ).

When F satisfies the SSC, this map is a bijection.

4.1. Self-conformal sets. Next we define self-conformal sets which act as a support
for the measures we study in this section. Recall that an IFS {ϕi}i∈Λ on Rd is called
self-conformal if it satisfies the following assumptions:

(C1) There is a set Ω ⊂ Rd, which is open, bounded and connected, and a compact
set X ⊂ Ω with non-empty interior, such that

ϕi(X) ⊂ X,

for all i ∈ Λ.
(C2) For each i ∈ Λ, the map ϕi is a C1+ε-diffeomorphism, and ϕi : Ω→ Ω is confor-

mal. That is, for all x ∈ Ω, the linear map ϕ′i(x) is a similarity. In particular,
for every y ∈ Ω, we have

|ϕ′i(x)y| = |ϕ′i(x)||y|,
where |ϕ′i(x)| denotes the operator norm of the linear map ϕ′i(x).

The use of the bounded open set Ω here is essential since contractive conformal maps
defined on whole Rd are in fact similarities. The limit set F of an IFS satisfying (C1)
and (C2) is called a self-conformal set. In the following we let ||ϕ′i|| = supx∈Ω |ϕ′i(x)|. It
follows from the fact that each ϕi is a contraction, that ||ϕ′i|| < 1, for all i ∈ Σ∗, and
that for a fixed i ∈ Σ, ||ϕ′i|n|| is strictly decreasing in n. Let us recall some key lemmas
for the proof of Theorem 4.1.

Lemma 4.3. There are constants C > 1, δ > 0, such that the self-conformal set F
satisfies the following.

(1) For all i ∈ Σ∗ and x, y ∈ Ω, we have |ϕ′i(x)| ≤ C|ϕ′i(y)|.
(2) For any x, y, z ∈ F , with |x− y| ≤ δ, we have

C−1|ϕ′i(z)| ≤ |ϕi(x)− ϕi(y)|
|x− y|

≤ C|ϕ′i(z)|,
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for all i ∈ Σ∗.
(3) For all i ∈ Σ∗,

C−1 ||ϕ′i|| ≤ diam(ϕi(F )) ≤ C ||ϕ′i|| .

The first property in Lemma 4.3 is commonly called the Bounded Distortion Property
(BDP) and it originates in [21]. Property (ii) is a special case of [8, Lemma 2.3] and
property (iii) is proved in [21].

Lemma 4.4. For all i, j ∈ Σ∗, we have

C−1||ϕ′i|| · ||ϕ′j|| ≤ ||ϕ′ij|| ≤ ||ϕ′i|| · ||ϕ′j||,

where C > 1 is the constant of Lemma 4.3.

Proof. Using the chain rule, and the conformality of the IFS, it is easy to see that for
all x ∈ F we have

|ϕ′ij(x)| = |(ϕi ◦ ϕj)
′(x)| = |ϕ′i(ϕj(x)) · ϕ′j(x)| = |ϕ′i(ϕj(x))| · |ϕ′j(x)|.

Applying Lemma 4.3 we get that for all y ∈ F

C−1|ϕ′i(y)| · |ϕ′j(x)| ≤ |ϕ′ij(x)| ≤ |ϕ′i(ϕj(x))| · |ϕ′j(x)| ≤ ||ϕ′i|| · ||ϕ′j||.

The result follows by taking suprema. �

Remark 4.5. Let i ∈ Σ be n-periodic. Notice that, by applying the previous lemma
iteratively, we have

C−k||ϕ′i|n||
k ≤ ||ϕ′i|kn|| ≤ ||ϕ

′
i|n||

k.

The exponential growth of the distortion in the lower bound is a problem in Section 5
when we want to establish a lower bound for the Assouad dimension of the measure we
investigate. The following lemma provides a precise estimate for this purpose.

Lemma 4.6. If x = π(i), where i ∈ Σ is n-periodic for some n ∈ N, then for any k ∈ N
we have

|ϕ′i|kn(x)| = |ϕ′i|n(x)|k.

Proof. Let i ∈ Σ be n-periodic, and let x = π(i). By the definition of π, this implies
that

(4.2) ϕi|n(x) = x.

Let k ∈ N. Using the chain rule, (4.2) and the conformality of the IFS we find that

|ϕ′i|kn(x)| = |((ϕi1 ◦ . . . ◦ ϕin) ◦ . . .
k times

◦ (ϕi1 ◦ . . . ◦ ϕin))′(x)|

= |(ϕi1 ◦ . . . ◦ ϕin)′(x) · . . .
k times

· (ϕi1 ◦ . . . ◦ ϕin)′(x)|

= |ϕ′i|n(x)k| = |ϕ′i|n(x)|k.

�



POINTWISE ASSOUAD DIMENSION FOR MEASURES 11

4.2. Quasi-Bernoulli measures. A probability measure ν on Σ is called quasi-
Bernoulli if there exists a uniform constant C ≥ 1, such that for all i, j ∈ Σ∗, we
have

C−1ν([i])ν([j]) ≤ ν([ij]) ≤ Cν([i])ν([j]),

where here and hereafter ij denotes the concatenation of the finite words i and j. Note
the similarity to Lemma 4.4. If C can be taken to equal 1, then the measure is called a
Bernoulli measure.

To simplify notation, from hereafter we write A . B to mean that A is bounded from
above by B multiplied by a uniform constant. Similarly, we say that A & B, if B . A
and A ≈ B if B . A . B.

Recall that two measures µ and ν are said to be equivalent if µ(A) = 0 if and only
if ν(A) = 0. In the following σ : Σ → Σ denotes the left-shift defined by σ(i) = i2i2 . . ..
Also recall that a measure ν on Σ is ergodic if either ν(A) = 0 or ν(A) = 1, for all
σ-invariant sets A ⊂ Σ.

For the rest of this section, let N ⊂ Σ denote the set of infinite words, which contain
all finite words as a substring, that is

N = {i ∈ Σ: j < i, for all j ∈ Σ∗}.
The following lemma is simple, but crucial to the proof of Theorem 4.1.

Lemma 4.7. If ν is a quasi-Bernoulli measure, then ν(Σ \ N ) = 0.

Proof. It is well known that if ν is a quasi-Bernoulli measure, then the measure ν̃ ob-
tained as a weak-∗ accumulation point of the sequence

ν̃n :=
1

n

n−1∑
j=0

ν ◦ σ−j,

is a σ-invariant and ergodic quasi-Bernoulli measure, which is equivalent with ν [11].
Therefore, we may assume without loss of generality that ν is σ-invariant and ergodic.
Now for every j ∈ Σ∗, we see by applying Birkhoff’s ergodic theorem, that

lim
n→∞

1

n

n∑
i=0

χ[j](σ
ni) =

∫
Σ

χ[j]dν = ν([j]) > 0,

for ν-almost every i ∈ Σ, where χ[j] denotes the indicator function of the set [j]. In
particular, this implies that for almost every i, there is n ∈ N, such that χ[j](σ

ni) = 1,
that is j < i. Let Σj = {i ∈ Σ: j < i}, so by the previous ν(Σ \ Σj) = 0. By definition
of N , we have

ν(Σ \ N ) = ν

(
Σ \

⋂
j∈Σ∗

Σj

)
= ν

(⋃
j∈Σ∗

Σ \ Σj

)
≤
∑
j∈Σ∗

ν(Σ \ Σj) = 0.

�

We say that a measure µ supported on a self-conformal set F is quasi-Bernoulli if
it is the projection of a quasi-Bernoulli measure ν supported on Σ under the natural
projection π : Σ→ F defined as in (4.1). Next we show that the quasi-Bernoulli measures
supported on self-conformal sets satisfying the SSC are doubling, which in particular
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implies that the Assouad dimensions of these measures are finite. After that, we prove
the main theorem of this section, Theorem 4.1.

Proposition 4.8. If µ is a quasi-Bernoulli measure fully supported on a self-conformal
set F satisfying the strong separation condition, then µ is doubling.

Proof. Let δ = mini 6=j d(ϕi(F ), ϕj(F )), which is positive since F is strongly separated.
Fix an integer k satisfying maxi∈Σk ||ϕ′i|| < δ

2C4 , where C is the maximum of the constant
given by Lemma 4.3. Finally, let c = mini∈Σk+1

ν([i]).
Since F is compact and µ is fully supported on F , it is easy to see that it suffices to

consider only uniformly small values of r > 0. Therefore let

0 < r < min{||ϕ′i|k || : i ∈ Σk}.
Note that the right hand side is positive since X is compact so this is possible. Also
fix x ∈ F , let i ∈ Σ be such that π(i) = x, and choose n ∈ N as the unique integer
satisfying C||ϕ′i|n|| < r ≤ C||ϕ′i|n−1

||. This immediately implies that ϕi|n(F ) ⊂ B(x, r).
Note that by the assumption on r we have

||ϕ′i|n|| < ||ϕ
′
i|k ||.

so in particular n > k. For any l ∈ N and i ∈ Λ let i|li denote the word (i1, i2, . . . , il, i)
and notice that by the strong separation condition and Lemma 4.3(1)-(3), we have for
all large enough l ∈ N and i 6= j that

(4.3) d(ϕili(F ), ϕilj(F )) := inf
x∈ϕili

(F )

y∈ϕilj
(F )

|x− y| ≥ δ

C2
· diam(ϕi|l(F )) ≥ δ

C3
||ϕ′i|l ||.

Now using Lemma 4.4, we have for every y ∈ B(x, 2r)

d(y, ϕi|n−k−1
(F )) ≤ 2r <

δ

C4 maxi∈Σk ||ϕ′i||
r ≤ δ

C3 maxi∈Σk ||ϕ′i||
||ϕ′i|n−1

||

≤ δ

C3

||ϕ′i|n−1
||

||ϕ′
σn−k−1i|k

||
≤ δ

C3
||ϕ′i|n−k−1

||,

in particular, combining this with estimate (4.3), we have B(x, 2r) ∩ F ⊂ ϕi|n−k−1
(F ).

Therefore, using the quasi-Bernoulli property, we have

µ(B(x, 2r))

µ(B(x, r))
≤
µ(ϕi|n−k−1

(F ))

µ(ϕi|n(F )))
=
ν([i|n−k−1])

ν([i|n])
.

1

ν([σn−k−1i|k+1])
≤ 1

c
.

Since the upper bound is independent of x and r, the claim follows. �

Proof of Theorem 4.1. It follows from Proposition 4.8 that dimA µ is finite. Let s <
dimA µ and c > 0. Now there is a point y ∈ F and radii 0 < r < R, satisfying

µ(B(y,R))

µ(B(y, r))
> c

(
R

r

)s
.

Let i ∈ N , x = π(i) and let j ∈ Σ, such that π(j) = y. Now choose k, n ∈ N as the
unique integers which satisfy

||ϕ′j|n+1
|| ≤ R < ||ϕ′j|n||, and ||ϕ′j|k || < r ≤ ||ϕ′j|k−1

||.
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Then ϕj|k(F ) ⊂ B(y, Cr) and B(y, δ
2C
R) ∩ F ⊂ ϕj|n(F ), where C is the constant of

Lemma 4.3. Using the quasi-Bernoulli property and the fact that µ is doubling, we get
that

c

(
R

r

)s
<
µ(B(y,R))

µ(B(y, r))
.
µ(ϕj|n(F ))

µ(ϕj|k(F ))
=
ν([j|n])

ν([j|k])
. ν([σnj|k−n])−1.

Now since i ∈ N , there is an index l ∈ N, such that σli|k−n = σnj|k−n. Let R′ = ||ϕ′i|l||
and r′ = ||ϕ′i|l+n||, and observe that by Lemma 4.4,

R′

r′
=
||ϕ′i|l ||
||ϕ′i|l+n||

.
1

||ϕ′
σli|n||

=
1

||ϕ′σnj|k−n||
.
||ϕ′j|n||
||ϕ′j|k ||

=
R

r
.

Again, it is easy to see that ϕi|l(F ) ⊂ B(x,CR′) and B(x, δ
2C
r′) ∩ F ⊂ ϕi|l+n(F ), so

using the doubling and quasi-Bernoulli properties of µ, we see that

µ(B(x,R′))

µ(B(x, r′))
&

µ(ϕi|l(F ))

µ(ϕi|l+k−n(F ))
=

ν([i|l])
ν([i|l+k−n])

& ν([σli|k−n])−1

= ν([σnj|k−n])−1 & c

(
R

r

)s
& c

(
R′

r′

)s
.

This shows that dimA(µ, x) ≥ s, and taking s → dimA µ gives dimA(µ, x) ≥ dimA µ.
Since this holds for all i ∈ N , the claim follows from Lemma 4.7. �

5. Measures with place dependent probabilities

In this section, we study the class of invariant measures with place dependent prob-
abilities supported on strongly separated self-conformal sets. The results of Section 4
show that these measures are doubling and that their pointwise Assouad dimension co-
incides with the global Assouad dimension at almost every point. Our main result of this
section, Theorem 5.3, complements these results by giving an explicit formula for their
Assouad dimension. To our knowledge, the formula has not been previously established
in the literature. Let us begin by defining our setting.

5.1. Place dependent invariant measures. We assume that our IFS {ϕi}i∈Λ is self-
conformal, that is it satisfies (C1) and (C2). In contrast to the case of self-conformal
measures where we assign a uniform measure pi on the set ϕi(F ), now we allow the mass
concentration to depend continuously on the point, that is we choose for each i ∈ Λ a
Hölder continuous function pi : X → (0, 1), which satisfy

∑
i∈Λ pi(x) ≡ 1 and consider

the probability measures satisfying the equation∫
f(x)dµ(x) =

∑
i∈Λ

∫
pi(x)f ◦ ϕi(x)dµ(x),

for f ∈ C(X) where here and hereafter C(X) denotes the set of continuous real valued
functions on X. We define the Ruelle operator T : C(X)→ C(X) by

(Tf)(x) =
∑
i∈Λ

pi(x)f ◦ ϕi(x),
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and let T ∗ : M(X) → M(X) denote the adjoint operator, where M(X) is the set of
Borel probability measures on X. Recall that for ν ∈M(X), T ∗ν is given by

T ∗ν(B) =
∑
i∈Λ

∫
ϕ−1
i (B)

pi(x)dν(x),

for all Borel subsets B ⊂ X. Barnsley et al. [2] as well as Fan and Lau [8] have studied
the measures which are invariant under T in a setting which is more general than ours.
The next proposition, which is vital to this section, is a special case of [8, Theorem 1.1]
or [2, Theorem 2.1] and we refer to the mentioned papers for the proof.

Proposition 5.1. Let F be a self-conformal set satisfying the SSC and pi : X → (0, 1)
be Hölder continuous for every i ∈ Λ. Then there is a unique Borel probability measure
µ satisfying

T ∗µ = µ.

Furthermore, for every f ∈ C(X), T nf converges uniformly to the constant
∫
f(x)dµ(x).

We call the measure µ an invariant measure with place dependent probabilities, which
we shorten to just invariant measure for the remainder of this section. As was the
case with self-similar measures and Bernoulli measures on the corresponding code space,
there is also a natural correspondence between the invariant measure µ and a Gibbs
measure on the code space. Let us define some useful notation for this section. For
i ∈ Σ we slightly abuse notation by writing pi(i) := pi(π(i)) and ϕi(i) := ϕi(π(i)), where
π : Σ→ F is the natural projection given by (4.1). For i ∈ Σ and n ∈ N we let

pi|n(i) =
n∏
k=1

pik(σ
k−1i).

Denote by P (Σ) ⊂ Σ the set of periodic points of Σ. For i ∈ P (Σ) with period of length
n, we let

pi = pi|n(i),

and

|ϕ′i| = |ϕ′i|n(i)|.
The following lemma is well known consequence of the Ruelle-Perron-Frobenius theorem
[4], and it follows from Proposition 1.3 and Theorem 1.6 of [8].

Lemma 5.2. There exists a unique σ-invariant probability measure ν on Σ, and a con-
stant C > 1 such that for any x ∈ F , i ∈ Σ and n ∈ N, we have

C−1pi|n(i) ≤ ν([i|n]) ≤ Cpi|n(i).

Furthermore, ν is quasi-Bernoulli and we have µ = π∗ν, where µ is the measure of
Proposition 5.1.

The previous lemma together with Proposition 4.8 immediately imply that the mea-
sure µ is doubling. We are now ready to state the main result of this section. Recall
that P (Σ) denotes the set of periodic words in Σ.
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Theorem 5.3. Let µ be a place dependent invariant measure fully supported on a self-
conformal set F , which satisfies the SSC. Then

dimA µ = sup
i∈P (Σ)

log pi
log |ϕ′i|

.

Proof. Let us start with the upper bound. For the rest of the proof let s =
supi∈P (Σ)

log pi
log |ϕ′i|

. Let x ∈ F and i ∈ Σ, such that π(i) = x. Let 0 < r < R and

choose integers k and n which satisfy

|ϕ′i|n+1
(x)| ≤ R < |ϕ′i|n(x)|, and |ϕ′i|k(x)| < r ≤ |ϕ′i|k−1

(x)|.

This immediately implies that ϕi|k(F ) ⊂ B(x,Cr), where C is the constant
of Lemma 4.3. As before, let δ = mini 6=j{d(ϕi(F ), ϕj(F )) : i 6= j}. Then
it is also easy to see that B(x, δ

2C
R) ∩ F ⊂ ϕi|n(F ). Let us set j =

(ik−n+1, ik−n+2, . . . , ik, ik−n+1, ik−n+2, . . . , ik, . . .) ∈ P (Σ). Note that Lemma 5.2 shows
that

k∏
j=k−n+1

pij(σ
j−1i) &

n∏
l=1

pjl(σ
l−1j).

Using Proposition 4.8 to conclude that µ is doubling and Lemmas 4.3(1) and 4.4, we get

µ(B(x,R))

µ(B(x, r))
.
µ(B(x, δ

2C
R))

µ(B(x,Cr))
≤
µ(ϕi|n(F ))

µ(ϕi|k(F ))
.
pi|n(i)

pi|k(i)

=

∏n
j=1 pij(σ

j−1i)∏k
j=1 pij(σ

j−1i)
=

(
k∏

j=k−n+1

pij(σ
j−1i)

)−1

.

(
n∏
l=1

pjl(σ
l−1j)

)−1

= |ϕ′j|n(j)|
−

log
∏n
l=1 pjl

(σl−1j)

log |ϕ′
j|n

(j)|

≤ |ϕ′j|n(j)|−s . |ϕ′i|k−n−1
(x)|−s .

(
|ϕ′i|n(x)|
|ϕ′i|k(x)|

)s

.

(
R

r

)s
.

This shows that dimA µ ≤ s, for any x ∈ F .
For the lower bound, let t < s, and choose i ∈ P (Σ), such that

log pi
log |ϕ′i|n(x)|

≥ t,

where x = π(i) and n is the period of i. For every k ∈ N let rk = |ϕ′ikn(x)| = |ϕ′in(x)|k,
where the second equality follows from Lemma 4.6. Using the SSC and Proposition 4.8
we get

µ(B(x, rk)) . µ(ϕi|kn(F )) =
kn∏
j=1

pij(σ
j−1i)

= pki = r

k log pi
k log |ϕ′

i|n
(x)|

k ≤ rtk.
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Taking logarithms and limits shows us that

dimloc(µ, x) ≥ t,

so in particular by Proposition 3.1(2), dimA µ ≥ t. Taking t→ s finishes the proof. �

Using the fact that the measure µ is quasi-Bernoulli, Theorem 4.1 gives the following
immediate corollary.

Corollary 5.4. If µ is a place dependent invariant measure fully supported on a self-
conformal set F satisfying the SSC, then

dimA(µ, x) = sup
i∈P (Σ)

log p̄i
log |ϕ′i|

,

for µ-almost every x ∈ F

Remark 5.5. By [10, Theorem 2.4], the Assouad dimension of a self-similar measure µ
under the SSC is given by the formula

(5.1) dimA µ = max
i∈Λ

log pi
log ri

,

see Section 6 for definitions. Our Theorem 5.3 can be viewed as a generalization of
this result. Indeed, an IFS consisting of similarities ϕi with similarity ratios ri is a
self-conformal IFS, with |ϕ′i(x)| = ri, for all x ∈ F . Moreover, when each pi(x) ≡ pi, the
assumptions of Theorem 5.3, and we have

dimA µ = sup
i∈P (Σ)

log pi
log |ϕ′i|

= sup
i∈Σ∗

log pi
log ri

= max
i∈Λ

log pi
log ri

.

This together with Corollary 5.4 gives the following slightly stronger version of [10,
Theorem 2.4]: If µ is a self-similar measure satisfying the SSC, then

dimA(µ, x) = max
i∈Λ

log pi
log ri

= dimA µ,

for µ-almost every x ∈ F .

6. Self-similar and self-affine measures

In this section we will concentrate on two important IFS constructions: self-similar
and self-affine measures. In the main results of this section, Theorems 6.1 and 6.4,
we establish the exact dimensionality property (1.2), for doubling self-similar measures
satisfying the open set condition, and for some self-affine measures supported on Bedford-
McMullen sponges.

Let F be a limit set of an IFS, as defined in the beginning of Section 4, and attach
to each i ∈ Λ a probability pi ∈ (0, 1), such that

∑
i∈Λ pi = 1. Recall that by [14], there

exists a unique Borel probability measure µ fully supported on F satisfying

µ =
∑
i∈Λ

piµ ◦ ϕ−1
i .

When the contractions ϕi are similarities or affine maps, F is called a self-similar or a
self-affine set, respectively, and µ is called a self-similar or a self-affine measure. If the
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maps ϕi are similarities, we denote their similarity ratios by ri ∈ (0, 1). In all of the
proofs, we assume that diam(F ) = 1, which does not result in loss of generality, since
re-scaling the set does not affect its geometry.

Self-similar and self-affine sets and measures are perhaps the most important proto-
typical examples of fractal sets and measures. These classes have been well studied in
the past decades, and substantial progress has been made in understanding their dimen-
sional properties. See for example [12] for recent developments in the self-similar case
and [5, 13] for the self-affine case. To make their study easier, it is usual to impose
some sort of separation conditions on the defining maps. The most common separation
conditions are the SSC (see Section 4) as well as the open set condition (OSC), which
the set F is said to satisfy if there exists an open set U ⊂ Rd, such that ϕi(U) ⊂ U
for all i ∈ Λ and ϕi(U) ∩ ϕj(U) = ∅ for i 6= j. We say that a self-similar measure fully
supported on a self-similar set F satisfies the SSC if F does and similarly for the OSC.

6.1. Self-similar measures and the open set condition. The doubling properties of
self-similar measures are quite well studied. The fact that self-similar measures satisfying
the SSC are doubling follows, for example, from Proposition 4.8, and as mentioned in
Remark 5.5, their Assouad dimension was explicitly computed by Fraser and Howroyd
[10], and it is given by the formula (5.1). Slightly surprisingly, relaxing the SSC to the
OSC changes the situation dramatically. Yung [25] provides examples of self-similar sets
satisfying the OSC for which (1) only the canonical self-similar measure is doubling,
(2) all self-similar measures are doubling, (3) the measures are doubling for some (non-
canonical) but not all choices of the weights pi. In particular this shows that the Assouad
dimension of self-similar measures satisfying the OSC can in many cases be infinite. Still,
it is an interesting question to study the Assouad dimension of doubling self-similar
measures which do not satisfy the SSC. In the main theorem of this section, we show
that if a self-similar measure satisfying the OSC is doubling, then the Assouad dimension
is given by the natural formula (5.1). Furthermore, we show that the pointwise Assouad
dimension agrees with the global Assouad dimension almost everywhere, obtaining a
stronger version of Remark 5.5.

In this section, we use the notation

ci|n =
n∏
k=1

cik ,

for any parameters ci, with i ∈ Λ. Recall that we may construct a Bernoulli measure ν
on Σ by setting for all i ∈ Σn,

ν([i]) = pi,

and extending this to the whole space Σ in the usual way. There is a natural correspon-
dence between the Bernoulli measure ν and the self-similar measure on F , namely

(6.1) µ = π∗ν,

where π : Σ→ F is the coding map given by (4.1). The proof of the next theorem, which
is our main result of this section, builds on ideas of [25] and [10].
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Theorem 6.1. Let µ be a self-similar measure satisfying the OSC. If µ is doubling, then

dimA µ = max
i∈Λ

log pi
log ri

,

and for µ-almost every x ∈ F , we have

dimA(µ, x) = dimA µ.

Proof. Let s = maxi∈Λ
log pi
log ri

. We start by showing that dimA µ ≤ s. Let x ∈ F ,

0 < r < R < 1 and let i ∈ Σ, be a (not necessarily unique) word satisfying π(i) = x.
Choose integers k and l, such that ri|k ≤ R < ri|k−1

and ri|l+1
< r ≤ ri|l . We may

assume from this point on that l > k, since otherwise R
r

would be bounded from above by
a uniform constant, which does not bother us. Now ϕil+1

(F ) ⊂ B(x, r), so in particular
µ(B(x, r)) ≥ pi|l+1

. Define Λx,R = {j ∈ Σ∗ : rj ≤ R < rj− , d(x, ϕj(F )) ≤ R}. Note that
the OSC implies that there is a constant M ≥ 1 independent of x and R, such that

#Λx,R ≤M.

For the simple proof of this see [17, Proposition 1.5.8]. By definition, for every j ∈ Λx,R

we have diam(ϕj(F )) = rj ≤ R < ri|k−1
, and since x ∈ ϕi|k−1

(F ), this implies that
d(ϕi|k−1

(F ), ϕj(F )) ≤ R < ri|k−1
. Combining these estimates we see that ϕj(F ) ⊂

B(ϕi|k−1
(F ), 2ri|k−1

), where B(ϕi|k−1
(F ), 2ri|k−1

) denotes the open 2ri|k−1
-neighbourhood

of the set ϕi|k−1
(F ). Therefore, since µ is doubling, we may apply Theorem 1.1 of [25]

to see that there is a constant C > 0, such that

pj ≤ Cpi|k−1

holds independently from j and i. Furthermore, it is clear that

B(x,R) ∩ F ⊂
⋃

j∈Λx,R

ϕj(F ),

so we may estimate

µ(B(x,R))

µ(B(x, r))
≤
∑

j∈Λx,R
pj

pi|l+1

≤MC
pi|k−1

pi|l+1

=
MC

pikpil

pi|k
pi|l

≤ MC

p2
min

(
pil−k+1

pil−k+2
· · · pil

)−1

≤ MC

p2
min

r log pik−l+1
log rik−l+1

il−k+1
r

log pik−l+2
log rik−l+2

il−k+2
· · · r

log pil
log ril
il

−1

≤ MC

p2
min

(
ri|k
ri|l

)s
≤ MC

p2
min

(
R

r

)s
,

which is enough to show that dimA µ ≤ s.
To finish the proof, it is enough to show that the lower bound holds for the pointwise

Assouad dimension at almost every point. For this, let i ∈ Λ be the index maximizing
log pi
log ri

and define Nn = {i ∈ Σ: (i, . . . , i) < i} and subsequently N =
⋂
n∈NNn. Pick

x ∈ π(N ) and note that as a special case of Lemma 4.7, we have that π(N ) is a set of
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full measure. Let i ∈ N be a (not necessarily unique) sequence such that π(i) = x. Now
for any n ∈ N there is an integer k such that

i = (i1, . . . , ik, i, i, . . . , i︸ ︷︷ ︸
n

, ik+n+1, . . .).

Choose Rn = ri|k and rn = ri|k+n
, so ϕik(F ) ⊂ B(x,Rn), and thus

µ(B(x,Rn)) ≥ µ(ϕik(F )) = pi|k−1
,

and by calculations similar to above,

µ(B(x, rn)) ≤MCpi|k+n
.

Therefore

µ(B(x,Rn))

µ(B(x, rn))
≥ 1

MC
p−ni =

1

MC
(r−ni )s =

1

MC

(
Rn

rn

)s
.

Since Rn
rn
→∞ as n→∞, this shows that dimA(µ, x) ≥ s. This finishes the proof, since

now at µ-almost every x, we have s ≤ dimA(µ, x) ≤ dimA µ ≤ s. �

Remark 6.2. It is an interesting question, if the same formula (5.1) for the Assouad
dimension of self-similar measures works with even less restrictive separation conditions,
such as the weak separation condition.

6.2. Self-affine measures on Bedford-McMullen sponges. A result similar to The-
orem 4.1 also holds for self-affine measures on very strongly separated Bedford-McMullen
sponges, which we define as follows. We work in Rd, with d ≥ 2. Start by choosing in-
tegers n1 < n2 < . . . < nd, and after that choose a subset Λ ⊂

∏d
q=1{0, . . . , nq − 1}.

The set Λ is the code space associated with the Bedford-McMullen sponge. For all
ı̄ = (i1, i2, . . . , id) ∈ Λ, we define an affine transform ϕı̄ : [0, 1]d → [0, 1]d by

ϕı̄(x1, . . . , xd) =

(
x1 + i1
n1

, . . . ,
xd + id
nd

)
.

The limit set of this IFS is called a Bedford-McMullen carpet if d = 2 or a Bedford-
McMullen sponge if d > 2. With this construction, we associate a probability vector
(pı̄)ı̄∈Λ, and define the self-affine measure µ on F as usual. Recall that µ is related to a
Bernoulli measure ν on the code space Σ by (6.1). To establish bounds for the measures of
balls, we need a separation condition which is strictly stronger than the strong separation
condition. Following Olsen [22], we say that a Bedford-McMullen sponge F satisfies
the very strong separation condition (VSSC), if for words (i1, . . . , id), (j1, . . . , jd) ∈ Λ
satisfying ik = jk, for all k = 1, . . . , q − 1, and iq 6= jq, for some q = 1, . . . , d, we have
|iq − jq| > 1. We also need the following quantity. For q = 1, . . . , d and ı̄ = (i1, . . . , id),
define

(6.2) pq (̄ı) = p(iq|i1, . . . , iq−1) =

∑̄
∈Λ

jk=ik, k=1,...,q

p̄

∑̄
∈Λ

jk=ik, k=1,...,q−1

p̄
,
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if (i1, . . . , iq, iq+1, . . . , id) ∈ Λ for some iq+1, . . . , id, and 0 otherwise. These numbers can
be interpreted as the conditional probabilities that the qth digit of a randomly chosen
member of Λ equals the qth digit of ı̄, given that the first q − 1 coordinates did. The
following theorem was proved by Fraser and Howroyd [10, Theorem 2.6].

Theorem 6.3. Let µ be a self-affine measure on a Bedford-McMullen sponge satisfying
the VSSC. Then

dimA µ =
d∑
q=1

max
ı̄∈Λ

− log pq (̄ı)

log nq
.

Again, we extend this result and prove that the pointwise Assouad dimension coincides
with this value at almost every point.

Theorem 6.4. Let µ be a self-affine measure on a Bedford-McMullen sponge F satisfying
the VSSC. Then

dimA(µ, x) = dimA µ,

for µ-almost every x ∈ F .

For the proof we need the concept of approximate cubes introduced by Olsen [22].
For clarity, we use ω to represent members of the set Σ instead of i which we used
in the self-similar case. We denote the approximate cube of level k ∈ N centered at
ω = (̄ı1, . . .) = ((i1,1, . . . , i1,d), . . .) ∈ Σ by Qk(ω), and define it by

Qk(ω) = {ω′ = (̄1, . . .) ∈ Σ: jt,q = it,q, ∀q = 1, . . . , d and ∀t = 1, . . . Lq(k)},
where Lq(k) is the unique number that satisfies

(6.3) n−Lq(k)−1
q < n−k1 ≤ n−Lq(k)

q .

The geometric equivalent of the approximate cube Qk(ω) is its image under the projec-
tion map π : Σ→ Rd. The image π(Qk(ω)) is contained in

d∏
q=1

[
i1,q
nq

+ . . .+
iLq(k),q

n
Lq(k)
q

,
i1,q
nq

+ . . .+
iLq(k),q

n
Lq(k)
q

+
1

n
Lq(k)
q

]
,

which is a hypercuboid in Rd with all side lengths comparable to n−k1 .
Olsen [22] observed that the measure of an approximate cube is given by

(6.4) µ(π(Qk(ω))) =
d∏
q=1

Lq(k)−1∏
j=0

pq(σ
jω),

where σ : Σ→ Σ is the left-shift and pq(ω) = p(i1,q|i1,1, . . . , i1,q−1), where the right hand
side is as in equation (6.2). Recall also that a Bernoulli measure on the code space Σ is
shift invariant.

The following proposition by Olsen shows that we can approximate the balls centered
at the Bedford-McMullen sponges by approximate cubes of comparable size.

Proposition 6.5. Let ω ∈ Σ and k ∈ N.

(1) If the VSSC is satisfied, then B(π(ω), 2−1nk1) ∩ F ⊂ π(Qk(ω)).
(2) π(Qk(ω)) ⊂ B(π(ω), (n1 + . . .+ nd)n

k
1).
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The proof of the proposition can be found in [22, Proposition 6.2.1]. Let us now prove
Theorem 6.4. The proof follows ideas of Fraser and Howroyd [10, Theorem 2.6], where
they carefully construct sequences of points and scales, which give the desired exponent
for the lower bound. The difficulty we face when compared to the approach in [10], is
that where they have the freedom to choose the point they consider for each pair of
scales independently, we have to find a single point where we see the desired behaviour
at arbitrarily small scales. Due to the non-conformality of the sponge, this essentially
means that we not only need to find long enough sequences of convenient symbols in the
symbolic space, but we also have to control their location within the word.

Proof of Theorem 6.4. First we note that Lq(n) increases with n and, since nq are strictly
increasing, decreases with q. It is an elementary exercise to show that for every k ∈ N,
there is an integer nk, such that for all n ≥ nk, we have

Ld(n) < Ld(n+ k) < Ld−1(n) < Ld−1(n+ k) < . . . < L1(n) < L1(n+ k).

For q = 1, . . . , d, let pmin
q = minı̄∈Λ pq (̄ı), and let ı̄min

q be some element of Λ which achieves
this minimum. Define for every k ∈ N the set

Ik =
⋃
n≥nk

d⋂
q=1

σ−Lq(n)[ ı̄min
q , . . . , ı̄min

q︸ ︷︷ ︸
Lq(n+k)−Lq(n) times

].

Note that an element ω ∈ Ik has the form

ω = (̄ı1, . . . ı̄Ld(n), ı̄
min
d , . . . , ı̄min

d , ı̄Ld(n+k)+1, . . . , ı̄L2(n),(6.5)

ı̄min
2 , . . . , ı̄min

2 , ı̄L2(n+k)+1, . . . , ı̄L1(n), ı̄
min
1 , . . . , ı̄min

1 , ı̄L1(n+k)+1, . . .).

It is also a simple exercise to show that if i, j ∈ Σ∗, and q, ` ∈ N, such that ` > q + |i|,
and A,B ⊂ Σ, with A ⊂ Λq × [i] and B ⊂ Λ` × [j], then

(6.6) ν(A ∩B) = ν(A)ν(B).

Now we choose m1 = nk and then inductively mi = L1(mi−1 +k)+1, for every i > 1, and

define Ai :=
(⋂d

q=1 σ
−Lq(mi)[ ı̄min

q , . . . , ı̄min
q︸ ︷︷ ︸

Lq(mi+k)−Lq(mi) times

]
)c

. Noting that Ick ⊂
⋂
i∈NAi and apply-

ing (6.6) inductively first to the sets Ai and then to the sets σ−Lq(mi)[ ı̄min
q , . . . , ı̄min

q︸ ︷︷ ︸
Lq(mi+k)−Lq(mi) times

],

we obtain

ν(Ick) ≤ ν

(⋂
i∈N

Ai

)
=
∏
i∈N

ν(Ai) =
∏
i∈N

(
1− ν

( d⋂
q=1

σ−Lq(mi)[ ı̄min
q , . . . , ı̄min

q︸ ︷︷ ︸
Lq(mi+k)−Lq(mi) times

]

))

=
∏
i∈N

(
1−

d∏
q=1

(pmin
q )Lq(mi+k)−Lq(mi)

)
≤
∏
i∈N

(
1− (pmin

q )d︸ ︷︷ ︸
<1

)
= 0.

Thus ν(Ik) = 1, and moreover ν(I) = 1, where I =
⋂
k∈N Ik.

Now let s = dimA µ given by Theorem 6.3, x = π(ω), where ω ∈ I, and let Rk =

(n1 + . . . + nd)n
−n−1
1 , and rk = 2−1n

−(n+k)−1
1 , where k and n are chosen, such that ω is
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given by equation (6.5). Observe that by Proposition 6.5 and equations (6.3) and (6.4),
we have

µ(B(x,Rk))

µ(B(x, rk))
=

∏d
q=1

∏Lq(n)
j=0 pq(σ

jω)∏d
q=1

∏Lq(n+k)
j=0 pq(σjω)

=
1∏d

q=1

∏Lq(n+k)

j=Lq(n)−1 pq(σ
jω)

=
d∏
q=1

(
1

pmin
q

)Lq(n+k)−Lq(n)+2

≥
d∏
q=1

(
1

pmin
q

)(n+k)
logn1
lognq

−n logn1
lognq

+1

≥ (pmin
q )−d

d∏
q=1

(
1

pmin
q

)k logn1
lognq

= (pmin
q )−d

d∏
q=1

(
nk1
)− log pmin

q
lognq

≥ (min
q
pmin
q )−d

(
nk1
)s

= C

(
Rk

rk

)s
,

where C = (minq p
min
q )−d · (2(n1 + . . . + nd))

s > 0 is a constant. Taking k → ∞, we

see that Rk
rk
→ ∞, which is enough to prove that dimA(µ, x) ≥ s. This holds for all

x = π(ω), such that ω ∈ I, where I has full measure, proving the claim. �

Example 6.6. Here we give an example of a measure µ, with dimMµ < dimA(µ, x), for
µ-almost every x. Let µ be a self-affine measure on a Bedford-McMullen carpet. By [9,
Theorem 8.6.2], the upper Minkowski dimension of µ is given, in the notation of Section
6, by the formula

dimMµ = max
ı̄∈Λ

(
− log pı̄
log n2

)
+ max

ı̄∈Λ

(
log p1(̄ı)

log n2

+
− log p1(̄ı)

log n1

)
,

and from Theorems 6.3 and 6.4, it follows that the pointwise Assouad dimension is given
by

dimA(µ, x) = max
ı̄∈Λ

(
− log pı̄
log n2

+
log p1(̄ı)

log n2

)
+ max

ı̄∈Λ

(
− log p1(̄ı)

log n1

)
,

at µ-almost every x. By choosing the pı̄, for example in a way that pı̄ and pı̄
p1(ı̄)

are

minimized in the same column, and p1(̄ı) is minimized in a different column, we have

dimA(µ, x) > dimMµ,

for µ-almost every x. For example, we may choose n1 = 3 and n2 = 4, and Λ =
{(0, 0), (0, 3), (2, 0)}, with p(0,0) = 1

8
, p(0,3) = 5

8
and p(2,0) = 1

4
. Then we have

dimA(µ, x) =
log 6

log 4
+

log 4

log 3
>

log 2

log 4
+

log 4

log 3
= dimMµ.,

for µ-almost every x.

7. Discussion

Most of the results of this paper follow a similar pattern by providing exact dimension-
ality properties for the pointwise Assouad dimension. A natural follow up to the results
of this paper would be to conduct finer analysis of the pointwise Assouad dimension
and develop tools for multifractal analysis in this setting. Classically, the multifractal
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spectrum of a measure is given by the Hausdorff dimension of α-level sets of the local
dimension. The celebrated multifractal formalism states that, in many cases, this spec-
trum is given by the Legendre transform of the Lq-spectrum of the measure, see e.g.
Chapter 11 of [6] for details. Of course, a natural question to ask is if something similar
is true for the dimension spectrum of the level sets of the pointwise Assouad dimension.

Question 1. What is the multifractal Assouad spectrum of a strongly separated self-
similar measure µ? By this we mean quantity

fA(α) := dimH{x ∈ X : dimA(µ, x) = α}.

Using the Hausdorff dimension instead of the Assouad dimension in the definition is
natural, since it is easy to see that each α-level set of the pointwise Assouad dimensions
is dense in the support and the Assouad dimension of sets is stable under closures.
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